Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota

摘要

The archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A–J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs. The biology of the archaeal phylum Woesearchaeota is poorly understood due to the lack of cultured isolates. Here, the authors analyze datasets of Woesearchaeota 16 S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities.

出版物
Nature Communications
黄文聪
黄文聪
博士在读

在NIOZ/乌特勒支大学Anja Spang教授课题组的博士生。

刘杨
刘杨
研究员/助理教授

喜欢用硅基工具来了解碳基微生物。